

The Kelkar Education Trust's

V G Vaze College of Arts, Science and Commerce

(Autonomous)

Syllabus for T.Y.B.Sc.

(June 2023 Onwards)

Program: B.Sc.

Semester VI

Course Title: BOTANY

Course Code	Paper Title	Credit
SBO601	PLANT DIVERSITY VII	2.5
SBO602	PLANT DIVERSITY VIII	2.5
SBOP601	PRACTICALS (601 & 602)	3.0
SBO603	FORM AND FUNCTIONS VI	2.5
SBO604	CURRENT TRENDS IN PLANT SCIENCES IV	2.5
SBOP602	PRACTICALS (603 & 604)	3.0

1. Syllabus as per Choice Based Credit System

i) Name of the Programme : B.Sc. (BOTANY)

ii) Course Code : SBO601

iii) Course Title : PLANT DIVERSITY-VII

iv) Semester wise Course Contents : Copy of the syllabus Enclosed

v) References and additional references : Enclosed in the Syllabus

vi) Credit structure :

No. of Credits per Semester : 2.5 + 1.5 = 04

vii) No. of lectures per Unit : 15

viii) No. of lectures per week : 04

ix) No. of Practicals per week : 01 (per batch of 25 students)

2.Scheme of marking 60 Marks External assessment

40 Marks Internal Assessment

3. Special notes, if any

As laid down in the College

4. Eligibility, if any Admission brochure / website

As per College Fee Structure

5.Fee structure specifications

6.Soecial Ordinance/Resolutions, if any No

Programme: TYBSc Semester: VI

Course PLANT DIVERSITY VII Course Code : SBO601

	Teaching Scheme (Hrs/Week) Continuo					nternal A) 40 mar		nent	End Semester Examination	Total
L	T	P	C	CIA- 1	CIA- 2	CIA-	CIA -4	Lab	Written	
4	-	1	2.5	20	15	05		-	60	100
Ma	Max. Time, End Semester Exam (Theory) -2Hrs.									

- 1. To recognize and identify and understand the life cycles of bryophytes.
- 2. To study in detail classification and general characters of three classes of Pteridophytes and identify as well as describe the lifecycles of one example from each class.
- 3. To study evolutionary aspects and economic utilization of Byrophytes and Pteridophytes.
- 4. To identify, describe and study in detail the life cycles of three Gymnosperms.

		Course (SBO601)	
Unit No.	Module No.	Content	Lectures
1		 Bryophyta (G. M. Smith Classification system to be followed) Life cycle of Marchantia Life cycle of Pelia 	15
2		 Pteridophyta (G. M. Smith Classification System to be followed) Calamophyta – Classification, general characters; Life cycle of <i>Equisetum</i> Pterophyta - Classification, general characters; Life cycle of <i>Marselia</i> 	15
3		 Bryophytes and Pteridophytes: Applied aspects Economic importance of Bryophytes. Evolution of Sporophyte and Gametophyte in Bryophytes. Economic importance of Pteridophytes Types of Sori and Evolution of Sori in Pteridophytes. 	15
4		Gymnosperms (Chamberlain's Classification System to be followed) • Life cycle of Gnetum • Life cycle of Ephedra. • Distribution of Gymnosperms in India	15
		Total No. of Lectures	60

1. Syllabus as per Choice Based Credit System

2.

i) Name of the Programme : BSc (BOTANY)

ii) Course Code : SBO602

iii) Course Title : PLANT DIVERSITY-VIII

iv) Semester wise Course Contents : Copy of the syllabus Enclosed

v) References and additional references : Enclosed in the Syllabus

vi) Credit structure :

No. of Credits per Semester : 2.5 + 1.5 = 04

vii) No. of lectures per Unit : 15

viii) No. of lectures per week : 04

ix) No. of Practicals per week : 02 (per batch of 25 students)

2.Scheme of marking 60 Marks External assessment

40 Marks Internal Assessment

3. Special notes, if any

As laid down in the College

4. Eligibility, if any Admission brochure / website

As per College Fee Structure

5.Fee structure specifications

6. Soecial Ordinance/Resolutions, if any No

Programme: TYBSc Semester: VI

Course: PLANT DIVERSITY - VIII Course Code: SBO602

Teaching Scheme (Hrs/Week)				Cont		nternal A) 40 mar		End Semester Examination	Total	
L	T	P	C	CIA- 1	CIA- 2	CIA-	CIA -4	Lab	Written	
4	-	1	2.5	20	15	05		-	60	100
Ma	Max. Time, End Semester Exam (Theory) -2Hrs.									

- 1.To study contribution of Botanical gardens, BSI to Angiosperm study and provide plant description, describe the morphological and reproductive structures of seven families.
- 2.To gain exposure to a phylogenetic system of classification.
- 3.To gain insight into the anatomical adaptations of different ecological plant groups.
- 4.To understand development plant of male and female gametophytes, embryonic structure and development.
- 5.To understand the different aspects and importance of Biodiversity and utilize them for conservation of species so as to prevent further loss or extinction of Biodiversity and preserve the existing for future generations.

Course (SBO602)								
Unit No.	('ontent							
1		 Angiosperms II Bentham and Hooker's system of classification for flowering plants up to family with respect to the following prescribed families and economic importance, medicinal importance and fruit morphology for members of the families Rhamnaceae Combretaceae Asteraceae Asclepiadaceae Labiatae Euphorbiaceae Graminae (Poaceae) 	15					

	Hutchinson's classification system of Angiosperms. Brief	
	Introduction, Merits and Demerits	
	Anatomy II	
	• Ecological anatomy (with one example each)	
	1. Hydrophytes – submerged, floating, rooted	
2	2. Mesophytes	15
	3. Sciophytes	15
	4. Halophytes	
	5. Epiphytes	
	6. Xerophytes	
	Embryology of Angiosperms	
	 Microsporangium, Microsporogenesis, Development of male 	
	gametophyte	
3	 Megaspornagium, Types of ovules, 	15
3	Megasporogenesis- Development of Polygonum type of embryo	
	sac	
	 Double fertilization : Process and Significance 	
	 Development of Dicot embryo – Capsella 	
	Plant Geography	
	Phytogeographical regions of India.	15
	Biodiversity:	
	1. Levels of biodiversity	
4	2. Importance and status of biodiversity	
	3. Loss of biodiversity	
	4. Conservation of biodiversity	
	5. Genetic diversity- Molecular characteristics	
	Total No. of Lectures	60

SBOP	PRACTICAL I & II
PRAC	TICAL-I PLANT DIVERSITY VII Credits 1.5
Sr.	Description
No.	
1	Bryophyta (G.M. Smith Classification System to be followed)
	• Study of stages in the life cycle of the following Bryophyta from fresh / preserved
	material and permanent slides
	1. Marchantia
	2. Pelia
2	Pteridophyta (G.M. Smith Classification System to be followed)
	 Study of stages in the life cycles of the following Pteridophytes from fresh /
	preserved material and permanent slides
	1. Equisetum
	2. Marselia
3	Bryophytes and Pteridophytes: Applied aspects
	Economic importance of Bryophyta
	Economic importance of Pteridophyta
	 Types of Sporophytes in Bryophyta (from Permanent slides)
	 Types of Sori and Soral Arrangement in Pteridophytes
4	Gymnosperms (Chamberlain's Classification System to be followed)
	 Study of stages in the life cycles of the following Gymnosperms from fresh /
	preserved material and permanent slides.
	1. Gnetum
	2. Ephedra

SBOP	PRACTICAL I & II								
PRAC	TICAL-II PLANT DIVERSITY VIII Credits 1.5								
Sr.	Description								
No.									
1	Angiosperms II								
	• Study of one plant from each of the following Angiosperm families as per Bentham								
	and Hooker's system of classification.								
	1. Rhamnaceae								
	2. Combretaceae								
	3. Asteraceae								
	4. Asclepiadaceae								
	5. Labiatae								
	6. Euphorbiaceae								
	7. Graminae (Poaceae)								
	 Morphological peculiarities and economic importance of the members of the above- 								
	mentioned Angiosperm families								
	 Identify the genus and species with the help of flora 								
2	Anatomy II								
	Study of Ecological Anatomy of								
	1. Hydrophytes: <i>Hydrilla</i> stem, <i>Nymphaea</i> petiole, <i>Eichhornia</i> offset								
	2. Epiphytes: Orchid root								
	3. Sciophytes: <i>Peperomia</i> leaf								
	4. Xerophytes: Nerium leaf, Opuntia phylloclade								
	5. Halophytes: Avicennia leaf and pneumatophore,								
	6. Mesophytes: Vinca leaf								
3	Embryology								
	• Study of various stages of Microsporogenesis, Megasporogenesis and Embryo								
	Development with the help of permanent slides / photomicrographs								
	 Mounting of Monocot (Maize) and Dicot (Castor and Gram) embryo 								
	• In vivo growth of pollen tube in Portulaca /Vinca								
4	Plant Geography								
	 Study of phytogeographic regions of India 								
	 Problems based on Simpson's diversity Index 								

1. Syllabus as per Choice Based Credit System

i) Name of the Programme : B. Sc (BOTANY)

ii) Course Code : SBO603

iii) Course Title : FORM AND FUNCTIONS - VI

iv) Semester wise Course Contents : Copy of the syllabus Enclosed

v) References and additional references : Enclosed in the Syllabus

vi) Credit structure :

No. of Credits per Semester : 2.5 + 1.5 = 04

vii) No. of lectures per Unit : 15

viii) No. of lectures per week : 04

ix) No. of Practicals per week : 01 (per batch of 25 students)

2.Scheme of marking 60 Marks External assessment

40 MarksInternal Assessment

3. Special notes, if any No

As laid down in the College

4. Eligibility, if any Admission brochure / website

As per College Fee Structure

5.Fee structure specifications

6. Soecial Ordinance/Resolutions, if any No

Programme: TYBSc Semester: VI

Course FORMS AND FUNCTION – VI Course Code: SBO603

Teaching Scheme (Hrs/Week)				Cont		nternal A) 40 mar		End Semester Examination	Total	
L	T	P	C	CIA- 1	CIA- 2	CIA-	CIA -4	Lab	Written	
4	-	1	2.5	15	15	10		-	60	100
Ma	Max. Time, End Semester Exam (Theory) -2Hrs.									

- 1.To study various plant biomolecular structures and appreciate the structures, role, functions and applications of enzymes.
- 2.To gain insight into the Nitrogen and plant hormone metabolism with applications of the same in agriculture and horticulture.
- 3.To understand principles of genetic mapping, mutations and solve problems based on them, gain knowledge of various metabolic disorders and their implications.
- 4.To generate and test hypotheses, make observations, collect data, analyze and interpret results, derive conclusions, and evaluate their significance within a broad scientific context, using suitable statistical techniques.

Course (SBO603)								
Unit No.	('ontent							
1		 Plant Biochemistry Structure of biomolecules: Carbohydrates (sugars, starch, cellulose, pectin, lipids (fatty acids and glycerol), proteins (primary, secondary and tertiary proteins with examples of each) Enzymes: Nomenclature, classification, mode of action, properties of enzymes. 	15					
2		 Plant Physiology II Nitrogen Metabolism: Nitrogen cycle, root nodule formation, and leghaemoglobin, nitrogenase activity, assimilation of nitrates, (NR, NiR activity), assimilation of ammonia, (amination and transamination reactions), nitrogen assimilation and carbohydrate utilization. 	15					

	Physiological effects and commercial applications of Auxins, Gibberillins, Cytokinins and Abscisic acid.	
3	 Genetics Genetic mapping in eukaryotes: discovery of genetic linkage, gene recombination, construction of genetic maps, three- point crosses and mapping chromosomes, problems based on the same Gene mutations: definition, types of mutations, causes of mutations, induced mutations, the Ame's test Metabolic disorders—enzymatic and non-enzymatic: Gene control of enzyme structure Garrod's hypothesis of inborn errors of metabolism, Phenyl ketone urea. 	15
4	 Biostatistics Test of significance student's <i>t</i>-test – Paired and Unpaired. Regression. 	15
	Total No. of Lectures	60

1. Syllabus as per Choice Based Credit System

i) Name of the Programme : B.Sc. (BOTANY)

ii) Course Code : SBO604

CURRENT TRENDS IN PLANT

iii) Course Title : SCIENCE – IV

iv) Semester wise Course Contents : Copy of the syllabus Enclosed

v) References and additional references : Enclosed in the Syllabus

vi) Credit structure :

No. of Credits per Semester : 2.5 + 1.5 = 04

vii) No. of lectures per Unit : 15

viii) No. of lectures per week : 04

ix) No. of Practicals per week : 01 (per batch of 25 students)

2.Scheme of marking 60 Marks External assessment

40 Marks Internal Assessment

3. Special notes, if any No

As laid down in the College Admission

4. Eligibility, if any brochure / website

5. Fee structure As per College Fee Structure specifications

6.Social Ordinance/Resolutions, if any No

Programme: TYBSc Semester: VI

Course name: CURRENT TRENDS IN PLANT SCIENCE – IV Course Code: SBO604

Teaching Scheme (Hrs/Week)				Cont		nternal A) 40 mar		nent	End Semester Examination	Total
L	T	P	C	CIA- 1	CIA- 2	CIA-	CIA -4	Lab	Written	
4	-	1	2.5	15	15	10		-	60	100
Ma	Max. Time, End Semester Exam (Theory) -2Hrs.									

- 1.To gain insight into recent molecular biology techniques for DNA analysis, amplification and Barcoding techniques and applications therein.
- 2.To understand and apply tools of Bioinformatics for data retrieval and phylogenetic analysis.
- 3.To learn about the sources of economically important plants in the field of fats and oils and apply it for extraction, dealing with entrepreneurship in the field
- 4.To gain knowledge and proficiency in preservation of post harvest produce and explore the possibility of entrepreneurship in the field.

Course (SBO604)						
Unit No.	Module No.	Content	Lectures			
		Plant Biotechnology II and Molecular biology				
		DNA sequence analysis— Maxam — Gilbert Method and				
		Sanger's method, Pyro Sequencing.				
		Polymerase Chain Reaction (PCR): Principles, working and				
1		applications. Types of PCR, Designing of Primers				
			15			
		Molecular Biology:				
		The genetic code: Characteristics of the genetic code				
		Translation in Prokaryotes and eukaryotes.				
		Bioinformatics				
		Organization of biological data, Types of Biological databases				
2		Exploration of data bases, retrieval of desired data, BLAST	15			
		(Types of BLAST, Applications).				
		 Molecule visualization tools – RASMOL, SPDBV, 				

	Economic Botany	
	• Essential Oils: Extraction, perfumes, perfume oils, oil of	
3	Rose, Patchouli, Sandalwood, grass oils: Citronella, Vetiver.	15
3	• Fatty oils: Drying oil (Soybean oil), semidrying oils (Cotton	
	seed) and non-drying oils (Peanut oil),	
	Vegetable Fats: Coconut oil	
	Post Harvest Technology	
	• Storage of Plant Produce –Preservation of Fruits and	15
	Vegetables	
	1. Drying (Dehydration) – Natural conditions – Sun drying,	
4	Artificial Drying – Hot Air Drying, Vacuum Drying,	
	Osmotically Dried Fruits, Crystallized or Candied Fruits,	
	Fruit Leather, Freeze Drying)	
	2. Freezing (Cold Air Blast System, Liquid Immersion	
	method, Plate Freezers, Cryogenic Freezing, Dehydro-	
	Freezing, Freeze Drying),	
	3. Canning	
	4. Pickling (in Brine, in Vinegar, Indian Pickles)	
	5. Sugar Concentrates (Jams, Jellies, Fruit juices)	
	6. Food Preservatives	
	7. Use of Antioxidants in Preservation	
	Total No. of Lectures	60

SBO	P602	PRACTICAL-III & IV	
PRACTICAL-III		FORM AND FUNCTION VI	Credits 1.5
Sr.		Description	
No.			
1	Plant Biochemistry		
	• Estimati	ion of proteins by Biuret method	
	 Effect o 	f temperature on the activity of amylase	
	 Effect o 	f pH on the activity of amylase	
	 Effect o 	f substrate variation on the activity of amylase	
2	Plant Physiology II		
	 Determi 	nation of alpha-amino nitrogen	
	• Estimati	ion of reducing sugars by DNSA method	
3	Genetics		
	 Problem 	ns based on three-point crosses, construction of chromosome maps	
	 Identific 	eation of types of mutations from given DNA sequences	
	• Study of	f mitosis using pre-treated root tips of <i>Allium</i>	
4	Biostatistics		
	• <i>t</i> -test (pa	aired and unpaired)	
	Problems based on regression analysis		

SBOF	P602 PRACTICAL-III & IV	
PRAC	CTICAL-IV CURRENT TRENDS IN PLANT SCIENCES IV Credits 1.5	
Sr.	Description	
No.		
1	Plant Biotechnology II	
	DNA sequencing by Sanger's Method and Pyro Sequencing Method	
	DNA barcoding of plant material by using MEGA Software	
2	Bioinformatics	
	BLAST: nBLAST, pBLAST	
	Multiple sequence alignment	
	Phylogenetic analysis	
	RASMOL/SPDBV	
3	Economic Botany	
	Demonstration: Extraction of essential oil using Clevenger	
	• Thin layer chromatography of essential oil of <i>Patchouli</i> and <i>Citronella</i>	
	Saponification value of Coconut oil	
	Rancidity of peanut oil	
4	Post-Harvest Technology	
	Preparation of Squash	

Semester End Theory Assessment - 60 marks

- i. Duration These examinations shall be of 2 hours duration.
- ii. Paper Pattern:
- 1. There shall be 05 questions each of 12 marks. On each unit there will be one question
- & last question will be based on all the 04 units.
- 2. All questions shall be compulsory with internal choice within the questions.

Questions Options Marks Questions on

Q.1) Any 2 out of 4	12 Marks	Unit I
Q.2) Any 2 out of 4	12 Marks	Unit II
Q.3) Any 2 out of 4	12 Marks	Unit III
Q.4) Any 2 out of 4	12 Marks	Unit IV
Q.5) Any 4 out of 5	12 Marks	All Units

Syllabus Prepared by:

1. Prof. (Dr.) Ajit Kengar: Member, Syllabus Committee

Head, Dept. of Botany,

KET's V.G. Vaze College (Autonomous), Mulund (East), Mumbai.

2. Dr. Supriya Thale: Member, Syllabus Committee

Assistant. Professor,

KET's V.G.Vaze College (Autonomous), Mulund (East), Mumbai.

3. Mr. Jatin Vaity: Member, Syllabus Committee

Assistant Professor,

KET's V.G.Vaze College (Autonomous), Mulund (East), Mumbai.

4. Dr. Rajni Shirsat: Member, Syllabus Committee

Assistant. Professor,

KET's V.G. Vaze College (Autonomous), Mulund (East), Mumbai.

5. Ms. Siddhi Baskaware: Member, Syllabus Committee

Assistant Professor,

KET's V.G. Vaze College (Autonomous), Mulund (East), Mumbai.

6. Ms. Nupoor Telawane: Member, Syllabus Committee

Assistant Professor,

KET's V.G.Vaze College (Autonomous), Mulund (East), Mumbai.